H=-16t^2+1064t

Simple and best practice solution for H=-16t^2+1064t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+1064t equation:



=-16H^2+1064H
We move all terms to the left:
-(-16H^2+1064H)=0
We get rid of parentheses
16H^2-1064H=0
a = 16; b = -1064; c = 0;
Δ = b2-4ac
Δ = -10642-4·16·0
Δ = 1132096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1132096}=1064$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1064)-1064}{2*16}=\frac{0}{32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1064)+1064}{2*16}=\frac{2128}{32} =66+1/2 $

See similar equations:

| 1,4-x=12 | | 3x-2x=11;x+7=8 | | 4(6x+3)=-180 | | 2/9=y-2/9 | | X^2-7x+3=12 | | 3x-2x=11x+7=8 | | 0=-16t^2+1064t | | A÷b=13 | | 35^2+17x+2=0 | | 250=Lx125 | | 0.12(y-8)+0.02y=0.06y-0.3 | | 7(x-3)=7(x+5) | | x+(4+3x)=72 | | 7​(x-3​)=7​(x+5​) | | 11/2x+1=3/4 | | n+3/5=4/5 | | 1/256=4^5x+1 | | 2x+13=x+19 | | 2x2+5x−75/8=0 | | x-3/2x+10+2x-12=x^2+3x-18/2x+10 | | t/10-7=-16 | | 3+x/5=-7 | | (1/4)^6x-2=7^x | | 3/4=y-2 | | 8z+3z=z=8 | | m/3-8=11 | | 3x+20=15+x | | 3.14+2r=72 | | 6*7-x=12 | | 6m+7-2m-14=5m+1 | | 2x^2+18=7x | | (x+23)+(x+13)=180 |

Equations solver categories